Code: 20EC3601

III B.Tech - II Semester - Regular Examinations - JUNE 2023

DIGITAL SIGNAL PROCESSING (ELECTRONICS & COMMUNCIATION ENGINEERING)

Duration: 3 hours Max. Marks: 70

Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.

2. All parts of Question must be answered in one place.

BL – Blooms Level

CO – Course Outcome

		BL	СО	Max.				
				Marks				
	UNIT-I							
1	Determine the stability of the system	L4	CO1,	14 M				
	$y(n) - \frac{5}{2}y(n-1) + y(n-2) = x(n) - x(n-1)$		CO2					
	and also sketch the Pole-zero plot.							
OR								
2	Determine the frequency response $H(e^{j\omega})$ for	L4	CO1,	14 M				
	the system and plot magnitude and phase		CO2					
	response.							
	$y(n) + \frac{1}{4}y(n-1) = x(n) - x(n-1)$							
UNIT-II								
3	Find the 8- point DFT of the sequence	L3	CO1,	14 M				
	$x(n) = \{1, 2, 3, 4, 4, 3, 2, 1\}$ using radix 2		CO5					
	DIF- FFT algorithm.							
OR								

4	Find the circular convolution of the sequences	L3	CO1,	14 M		
	$x_1(n) = \{1, -1, 2, 3\}; x_2(n) = \{0, 1, 2, 3\}$		CO5			
	using DFT.					
UNIT-III						
5	Design a Butterworth digital IIR low pass filter	L5	CO1,	14 M		
	using impulse invariant transformation by		CO2,			
	taking T= 1 second, to satisfy the following		CO4			
	specifications.					
	$0.707 \leq H(e^{j\omega}) \leq 1.0; 0 \leq \omega \leq 0.3 \pi$					
	$\left H(e^{j\omega})\right \leq 0.2$; $0.75 \pi \leq \omega \leq \pi$					
	OR					
6	Design a Butterworth digital IIR low pass filter	L5	CO1,	14 M		
	using bilinear transformation by taking T= 1		CO2,			
	second, to satisfy the following specifications.		CO4			
	$0.8 \leq \left H(e^{j\omega})\right \leq 1.0; 0 \leq \omega \leq 0.2 \pi$					
	$\left H(e^{j\omega})\right \leq 0.2$; $0.32 \pi \leq \omega \leq \pi$					
UNIT-IV						
7	Design an ideal high pass filter with a frequency	L5	CO1,	14 M		
	response		CO4			
	$H_d(e^{j\omega})=e^{-j\alpha\omega}forrac{\pi}{4}\leq \omega \leq \pi$					
	$=0 \text{ for } \omega \leq \left \frac{\pi}{4}\right $					
	Find the values of h (n) for $N=11$, using					
	Hamming window technique.					
OR						

8	Obtain the Direct form I, Direct form II,	L5	CO1,	14 M	
	Cascade form and Parallel form for the		CO4		
	following system				
	$y(n) = \frac{1}{4}y(n-1) + \frac{1}{8}y(n-2) + x(n) + x(n-1)$				
UNIT-V					
9	Explain decimation and interpolation by an	L3	CO1,	14 M	
	integer factor with necessary equations and		CO5		
	block diagram.				
OR					
10	List out the applications of Multirate signal	L3	CO1,	14 M	
	processing and also the role of multistage		CO5		
	implementation of sampling rate conversion.				